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Ti t l e  of Thesis: 

ABSTRACT 

Waves in a Plasma in a Magnetic Field 

Howard Martin S-ainer, Doctor of Philosophy, 1966 

Thesis directed by: Professor Derek A. Tidman 

Two examples of slightly nonlinear wave propagation in  a collision- 

less plasma permeated by a uniform background magnetic field Bo are 

discussed. The first  calculation considers externally generated electro- 

magnetic waves propagating along Bo in  a plasma described by the first 

three moment equations obtained from the Vlasov Equation. Finite wave 

amplitude effects would lead t o  t i m e  and/or space growing solutions i f  

conventional perturbation theory were used. These spurious solutions 

are eliminated by the introduction of amplitude dependent wavenumber 

and frequency shifts into the calculation, i n  the hope that such nonlinear 

effects might be experimentally measurable. The resul ts  for a traveling 

right-circularly polarized (i. e., cyclotron) wave are found t o  be (for the 

low frequency region where u2 >> c2 k2 >> S2’ >> k2V2, e 

- 

- 

>> 0’) , 

2 A k  
k 

for fixed w,  and 

for fixed k. Here b and Bo are the magnitudes of the wave and 
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unperturbed magnetic fields respectively and V is the electron thermal 

velocity. It is found that the sign and ratio of the magnitudes of t hese  

dimensionless shifts can  be correctly predicted by assuming that the 

cyclotron dispersion relation is modified by the finite wave amplitude 

effects. 

The second calculation is motivated by the investigation of the l ine 

splitting observed in plasma radiation (Type I1 radio bursts) from the Sun. 

Here internally excited longitudinal electrostatic oscillations propa- 

gating at arbitrary angles with respect t o  Bo are considered. Collisions 

between these electrostatic plasma waves generate electromagnetic radi- 

ation at approximately the plasma frequency for electron-ion plasma wave 

collisions, and radiation at approximately twice the plasma frequency for 

electron-electron interactions. 

direction of propagation determines the frequency of oscillation of the 

longitudinal waves. Thus, for propagation parallel t o  Bo w = w , and 

for propagation perpendicular t o  Bo 0 w + Q 2 / 2 w  , where 

G? = e B , / m c  < w = ( 4 ~ r e ’ n ~ / m ) ~ .  e 

distributions of energetic or superthermal electrons coexisting with a 

thermal background can  not only drive the fluctuation spectrum of the 

longitudinal oscil lations (and hence the intensity of the emitted radiation) 

up t o  very high levels,  but can also concentrate the propagation vectors 

both parallel and perpendicular to Bo. This concentration produces 

enhanced emission at and we t Q2/2w and at 2w and 2we t Q2/we 

- 

In the presence of a magnetic field the 

e - 
e e 

1 

It is found that suitable anisotropic 

- 
e e e 
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(for the fundamental and second harmonic respectively) with a significant 

reduction for the intermediate frequencies. 

Specific superthermal electron distributions which produce the de- 

sired splitting are found t o  be those with a kinetic temperature perpen- 

dicular t o  Bo much larger than that parallel  t o  Bo - , which a l so  have a 

net drift through the background plasma along Bo . It is believed that 

these types of anisotropic distributions might plausibly exist in Type I1 

events,  thus explaining their structure. 

- 
- 
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CHAPTER I 

INTRODUCTION 

I 

I 

I 

There are a multitude of wavemotions capable of propagating in a 

plasma which is permeated by a magnetic field. 

cuss two calculations,  both of which deal with slightly nonlinear wave- 

propagation in such a magnetized plasma. The first  calculation was  

motivated by an attempt t o  obtain an experimentally measurable non- 

l inear effect and the second to  understand the l ine splitting observed 

in plasma radiation (Type I1 bursts)  from the Sun. 

In th i s  thes i s  we dis- 

The first situation covered will be that of externally generated 

electromagnetic waves propagating along E, in a coll isionless plasma 

described by the first  three moment equations obtained from the Vlasov 

Equation. Only circularly polarized electromagnetic waves (i. e., cyclo- 

tron waves) will  propagate along the magnetic field in lowest order. We 

will  find that finite wave amplitude effects will lead to  time and/or 

space  growing solutions i f  we use  conventional perturbation theory. 

Since the sys tem is s table ,  it appears that this  so-called secular 

behavior is a consequence of the mathematics rather than of the physics. 

To avoid these  spurious unstable solutions we will  use a method devel- 

oped by Krylov, Bogoliubov, and Mitropolsky1’2 and extended by 

3 Montgomery and Tidman. An amplitude dependent frequency or 

1 
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wavenumber shift is introduced into the calculation to enable us  t o  

eliminate just  those terms which would otherwise cause trouble in the 

final perturbation solutions. 

the hope that such shif ts  might be experimentally observable. 

The  basic  motivation for this  section is 

We shal l  be primarily concerned with si tuations in which a standing 

wave is excited in a bounded s lab of plasma, or a traveling wave is 

excited at some fixed frequency a t  the boundary of a semi-infinite plasma. 

Within the framework of the Krylov-Bogoliubov-Mitropolsky perturbation 

theory for such situations, nonlinearities enter in two ways: (i) Har- 

monics of the fundamental wavenumber and a complicated spectrum of 

frequencies are generally present for the standing wave. 

eling wave excited at a boundary, harmonics of the fundamental frequency 

and a complicated wavenumber spectrum are generally present. (ii) Fre- 

quency or wavenumber shifts  in the fundamental phase of the wave are 

produced. 

3 

For the trav- 

These shifts are amplitude dependent. 

Thus suppose for example a standing wave of fixed k is excited in 

a s lab  of thickness  2r /k  and that in the linear l i m i t  it has a frequency 

w (k) where the dispersion relation &(a, k)  = O  . Then if  the fundamental 

wave is excited to  a finite amplitude a it wil l  oscil late a t  a shifted 

frequency w (k) t O w  (a, k) . 

boundary of a semi-infinite plasma with a fixed frequency w , the cor- 

responding shifted wavenumber for the plasma wave would be 

k(w ) t Ak(a, w ) . 

Similarly if  one drives a wave at the 

Montgomery and Tidman3 showed that the methods of 
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R e f .  2 could be  generalized to include partial differential equations, in  

particular, the Klein Gorden equation with a s m a l l  nonlinear source term. 

The resul ts  were applied to a traveling electromagnetic wave in a "cold" 

plasma (i. e.,  the pressure tensor is dropped). The shifts obtained were 

found to be quite small and probably very difficult to measure -even 

using laser  beam intensit ies.  

number shifts  calculated in this  work might be  more amenable t o  

It is hoped that the  frequency and wave- 

m e  a sur e m e  n t . 

In the low frequency region, >> k2 c2 >> cf >> k2V2 , n2 >> wz 
e 

(where 

wave has  a dispersion relation 

= eB,/mc and w2 = 4smoe2/m ), the right circularly polarized e 

c Z k 2  0 s -  

e 
(1) 2 w 

This type of wave is well  known in  solid state plasma terminology a s  a 

" helicon wave." 

We have calculated the wavenumber shift for the case of a traveling 

cyclotron wave excited at some fixed frequency at the boundary of a 

semi-infinite plasma, and the frequency shift for the  case where the 

wavenumber k is held fixed. In the second situation, k is usually 

2lT fixed by utilizing a bounded slab of plasma of thickness - 
k .  

is  physically more meaningful to talk of standing waves in such a 

4 bounded plasma, and a calculation w a s  carried out for this  case. 

ognizing that our first  case is probably more significant for traveling 

Thus, it 

Rec- 
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waves,  we shall  nevertheless list both resu l t s  for the sake of comparison. 

In the low frequency l i m i t  specified above, the result for the traveling 

wave becomes 

nk N 1 (L) (ix) 2 
- 

k 4 Bo 

for fixed w ,  and 

( 3 )  

for fixed k ,  where b and Bo are the wave and unperturbed magnetic 

f ie lds  respectively and V is the electron thermal velocity. 

We shal l  a l s o  show as a check that  consideration of the cyclotron 

dispersion relation (21)  l eads  in a natural way t o  the correct sign for 

AU 
, and t o  the correct ratio of their magnitudes (i. e., A k  and - k w 

- 

The second example involving wave effects in a "magnetized" plasma 

considers internally excited longitudinal electrostatic oscil lations propa- 

gating a t  arbitrary angles with respect t o  the magnetic field. 

that  coll isions between these plasma oscil lations can produce electro- 

magnetic radiation that, for some electron velocity distributions, is 

split by the magnetic field. It is believed that th i s  mechanism is re- 

sponsible for the observed structure of Type I1 solar radio bursts (see 

Figure VIII). 

plasma and kinetic theory is employed as opposed to  the macroscopic 

approach of the first  example. 

We find 

In th i s  problem we are dealing directly with a Vlasov 
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A flux of energetic (superthermal) electrons coexisting with a thermal 

I 

background can, under some circumstances, generate very high amplitude 

longitudinal waves. Basically, the energetic electrons e m i t  electro- 5 

static waves by a process of Cerenkov emission. If Landau damping is 

very s m a l l  for certain ranges of wave phase velocity, then the wave or 

fluctuation spectrum for th i s  range can become very large compared with 

thermal fluctuations. The limiting amplitude for t h i s  process is deter- 

mined by the balance between reabsorption of the longitudinal waves by 

Landau damping and the Cerenkov emission by the superthermal elec- 

trons. 

energy into electromagnetic radiation with frequency w by scattering 

off ion plasma waves, and a part into radiation at 2 w  by scattering off 

each other, where 0 is the electron plasma frequency ( 4 ~ r e ~ n ~ / m ) ”  

Sturrock, 8’ C ohen 1oy11’12). Thus we see that (Tidman and Weiss,  

radiation from such a plasma can be enhanced many orders of magnitude 

over that generated by thermal fluctuations in a quiescent plasma. 

These longitudinal electron plasma waves convert a part of their 

e 

e 
1. 

e 
6,7 

It has  been suggested by many authors (for a review of the literature 

see Wild, Smerd, and Weiss13) that such a radiation process may be 

the mechanism involved in Type I1 solar radio bursts (Ginzburg and 

Zheleznyakov ), although there are various ideas  on how the electron 

plasma oscil lations are excited. 

14 

The purpose of the second section of th i s  work is t o  calculate the 

effects of a weak magnetic field on the p la sma  radiation spectrum, since 

it has long been suspected that such a field may be responsible for the 
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observed l ine splitting i n  some Type I1 events.  

change in lowest order due t o  a weak magnetic field is in the real  part 

of the Landau denominator 8 ( k ,  - a). 

R e  ( 8 ) = 0 change with the inclusion of the field. For s m a l l  wave- 

number electron plasma waves the dispersion relation now becomes 

w2 w2 t Q 2  sin 'e where 8 is the angle between the magnetic field 

and the propagation vector k for the longitudinal wave and 52 is the 

(see Figure I). eB0 electron cyclotron frequency - m c  

frequency of these longitudinal electrostatic waves changes with their 

The only significant 

That is, the roots of the equation 

e 

Thus we see that the 

direction of propagation. 

frequencies approximately zero compared to w for all directions of 

propagation. 

Ion waves on the other hand propagate with 

e 

If we now consider electron distributions which concentrate the 

propagation vectors in the directions parallel and perpendicular t o  the 

magnetic field, then we can generate electromagnetic radiation which 

is split in frequency. 

as follows: 

This process can be represented schematically 

2 

epo, t g) t (ipo, 0) -. (... w e t -Q-) 2 w  ( e 2 u  e l  I e 

(epo, w ) t (epo, w ) -+ (EM, 2we) 
e II e li 

(4) 

(epo, 0 t d) t (epo, we t e) - (EM, 2w t L) 2 

e a  e 1 .  e 2 w  e I .  e 2 w  
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where epo, ipo, and EM denote electron plasma oscillations, ion plasma 

oscillations, and electromagnetic radiation respectively. The approxi- 

- mate frequencies of these  waves are given in  the second argument of each  

bracket with subscripts denoting parallel or perpendicular propagation of 

the longitudinal waves. Thus we see that the splitting of the second 

harmonic is twice that for the fundamental, in agreement with observa- 

t ions by Roberts. 1 5  

These electromagnetic waves are generated by coll isions 

which are almost head-on between longitudinal waves of almost equal  

wavelengths. This may be represented symbolically by terms such a s  

Since K O ( F )  << k ,  we may approximate by 

-t (ut 9 -IC) (a, I g E M  k L p o  ePo 
(0 - 0 1  , 

as  is illustrated in Figure 11. 

Specific superthermal electron distributions which concentrate the 

propagation vectors along the desired directions are found t o  be those 

with a kinetic temperature perpendicular t o  ,Bo much larger than that 

parallel  t o  go, which a l so  have a net drift through the background 

plasma along _Bo .  The longitudinal wave spectrum perpendicular t o  ,Bo 

is enhanced by electrostatic Cerenkov emission by the energetic elec- 

trons,  and that parallel t o  Bo by the streaming motion which might 

possibly verge on two-stream instability for some wavenumbers. 
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8 

It will become clear from our calculations that the splitting depends 

sensit ively upon the specific distributions assumed. 

distributions simply broaden each emitted l ine,  without generating a 

splitting. Other distributions, while leading to a mathematical splitting, 

may not yield enough energy in one part of the l ine for the splitting to 

be observable. 

Isotropic velocity 

It is believed that these  types of anisotropic distributions are 

physically plausible and might exist  in a Type I1 radio burst. 

the main part of the calculations does not depend specifically on this  

assumption and the application to  Type I1 events  is therefore considered 

separately. 

However, 



CHAPTER I1 

CYCLOTRON WAVES IN A 'HOT' PLASMA 

We sha l l  consider a coll isionless electron gas coexisting with a 

uniform immobile positive ion background and a uniform magnetic field. 

We take velocity moments of t h e  Vlasov Equation and allow for thermal 

effects by the inclusion of a pressure tensor. 

of obtaining frequency and wavenumber shifts  which are calculable, we 

shal l  neglect the gradient of the  heat flow tensor and thereby close our 

moment equations. 

However, in the interests  

A. Basic Equations 

Our basic equations are, therefore, 

a - aN at t - - ( ( N V _ )  ax = 0 

V _ = O  
a a a 

- ax a& - + g * --V t t r (p  - - - aE I)+ E - -  - 

together with Maxwell' s equations 

( 9 )  

9 



a 1 ag 47~eNV_ - ) ( E = - - -  9 ax c a t  C 

tr(A) - means the transpose of - 

-. 1 ag a E = 4re (no-N)  a 
- x E = - - - *  ax c a t  ax 

A ,  N is the number density, the velocity, 
c - 

p - the pressure tensor, E and 

no the uniform positive ion density. 

the electr ic  and magnetic fields,  and - 

We now seek a Krylov-Bogoliubov-Mitropolsky perturbation expansion 

of the form 

where the successive corrections are assumed t o  be functions of a single 

amplitude la' and phase variable for the wave. We are interested 

in developing the expansion for t h e  c a s e  in which taking the l i m i t  E -. 0 

recovers the right -circularly polarized traveling cyclotron wave 

- E(') = a (cos (kz - ut), - sin(kz - at) ,  0)  

Bo = ( 0 ,  0 ,  Bo) 

The appropriate expansions for the phase and amplitude variables are 



I '  
aa 2 = -0 t E2A(a)  t . .., - = E  B(a) t ..., 

at at 
aa - = c2D(a )  t . . .  . ' az 

&!L = k t E2C(a) t . , . az 

The functions A, B, C,  and D are to  be determined by requiring that 

there be no secular ( +  proportional) terms in the expansion scheme (11). 

It should be noted that the first  corrections in  (13) are O ( c 2 )  rather than 

O ( E ) .  This is a consequence of the only nonlinear terms of O ( E ~ )  in 

(7)-(10) being quadratic in  the perturbations. 

the O ( E  2, equations. 

3 

N o  secularity a r i ses  in 

B. O ( E )  Equations 

We substitute the expansions (1 1)-(13) in (7)-(10) and equate terms 

of O ( E )  t o  obtain the equations for linear wave propagation in an electron 

plasma. 

( 0 ) )  = 0 
i l k  ' l j  

e (O) t E t -  m c  Bok(EjLk 'Pi  
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where E is the anti-symmetric unit tensor. Here we are assuming 

that all quantities depend on the space variable z only. Where convenient, 

we have a l so  used subscript notation for the vectors and tensors 

(i, j = 1, 2, 3 etc.). 

ijk 

This system has solutions corresponding t o  a traveling right 

circularly -polarized cyclotron wave 

where 

E(') - = a(cos  +, - sin + ,  0) 

c o s  + ( 0 )  - - (0)  - - akP, (c2k2 - 0') 

pY 2 pzY 4 n e  no w(S2 - w) 
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The frequency w and wavenumber k are  related by the dispersion 

relation for right circularly polarized cyclotron waves 

ow2 (S2 - a) e c Z k 2  - 0' - = o ,  [(a - - kV2] 

and t o  O ( E ) ,  + = kz - u t .  V is the thermal velocity defined by 

v2 = po/mno (22) 

For very low frequencies, w2 << Q 2  >> k2V2 , 

t o  the helicon dispersion relation 

w2 << c2 k2 , (21) reduces 

w cZk2S2/w2 e . (23) 

Note that i f  we had started with a left-circularly polarized wave 

- E(') = a(cos  +, s i n  + ,  0) (24) 

we would have obtained a dispersion relation 

ww2 (S2 t 0) e c2k2  - w2 t = 0 .  [(a t 0)' - k2VZ] 

i. e., no In the same low frequency l i m i t  we obtain c2 k2 -ww /Q, 

propagation for this  mode when w << S 2 .  

2 

e 

C.  First Order Corrections to  the Linear Wave Solution; 

O (  E')  Equations 

We now proceed to  the O( E' )  equations in the perturbation expan- 

sion. Thus we substitute (11)-(13) in ( 7 ) - ( l o ) ,  make use of the O (  E )  

solutions (19) and pick out the O( c 2 )  terms, namely, 
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I 
1 
I 
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I 
I 

= 0 s ince v(O) and are - 
antiparallel. 

14 

( 2 6 )  

These equations are linear in the first corrections (1) , e t c . ,  t o  

the  wave variables, but involve source terms on the right hand side which 
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are quadratic in the O(E ) variables. 

Using the lowest-order solutions (19), we can  write out the various 

components of Eq. (28) for p!! as follows: 
11 

(35) becomes 

2 2  
(1) 

(1) - aZk2Po(c2k2 - a  1 . (1) 
t "Pyy - "Pxx - 1  IT' e2 ni u3 (S2 - o ) ~  

aPxV 
'w a+ 
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We are concerned only with the inhomogeneous part of the solution. T o  

th i s  one could add, of course, any solution of the homogeneous equations 

in order t o  satisfy various init ial  conditions in the excitation of the os- 

cillations. 

solution contributes to the frequency and wavenumber shifts  obtained in  

( ) ( e 3 ) .  Thus, noting that t o  O(E’) no secularity occurs, we find, 

However (see Ref.  4) only the inhomogeneous part of the 

where 

and 

0 0 0 - 

( 3  9) 

and  X is defined in Equation (36) .  

We note from these  expressions that the perturbation expansion is 

val id  only i f  we can treat (52 - O)  as an 0(1) quantity. 

The solutions (39)-(41) represent the first  correction t o  the strictly 

l inear wave solutions (19)-(20). In th i s  order no secular terms have 

ar isen and the corrections are identical with those one would obtain with 

conventional perturbation theory. It is in O ( e 3 )  that we find secularity 
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and a finite wavenumber or frequency shift. 

(39)-(41)  i n  the traveling wave case  involve only the pressure tensor. 

Thus a traveling wave in a 'cold' p l a sma  would clearly not generate any 

such wavenumber or frequency shifts. 

Note that  these  corrections 

D. Second-Order Corrections to  the Linear Wave Solution; 

0 (c3 ) Equations 

We substitute the expansions (1 1)-(13)  into (7 ) - (10 )  and pick out 

the O ( c 3 )  terms t o  obtain the equations for the second order corrections 

t o  the cyclotron wave solutions. They are  
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(45) 

(47) 

(2) (2) When we solve for E 

terms. We eliminate them by a proper choice of A, B, C,  and D .  We 

now wish t o  obtain an equation that involves only 

part, and has  a source term involving the perturbations p , e t c . ,  and 

pij , etc .  

, pij , . . . , etc., we find secular (+-proportional) 

(2) ax 
a+ 
- in its l inear 

( 1 )  
i j  

( 0  1 

First, consider the equations for the quantities p(2) which follow i z  

from (44). They are, 

(48) 
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a a 
a+ a+ 

Taking - of (49) and using (50 ) ,  or taking - 
gives 

of (50) and using (49) 

Next, we operate with (az q az t n2)  on (43) and use  (51) to eliminate 

p(2)  and p(') . We a l so  make use of (45) and (46) t o  eliminate E"' and 

- E"). Similarly, we use (42), (43), (44) and (47) t o  find an equation for 

XZ YZ 

(2)  av 

a+ 
Z - . We thereby find an equation which can be written as 

a a 0 

a 0 

xx Xy 

YX YY 

a zz  where &=I 0 

with 

; g =  

S 

0 SI] ( 5 3 )  

a = - a  (wz t k2V2) - 
Xy YX (55) 
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a2 2 a = (0' - 3k2V2) 7 - we 
zz a+ 

and 

Recall from (49), 

= - (AG a t B z ) p ~ z  a ('1 - 2 m c  B ( O )  k z P k P l x  - Po( C 6 t D a)y('), aa x (59) 

and from (50), 

In (57) and (58), 

4 s r e n o p =  ( ( A , t B A ) t $ ( C - t D g  a aa a+ a a )) E"' X 

and 



We note from (52) -( 53) that av(2)/a+ is decoupled from av(2)/a+ z X 

and av(')/a+ . Setting av(2)/a+ = F  c o s  n + ,  for example, where n is 

an integer, we obtain 

Y Z 

F [n2 (3kZV2 - 0') - mi] = 0 (63) 

In (63), F must be set  equal to  zero, because the bracket does not 

satisfy the dispersion relation (21) for any n (i. e., it is non-zero). 

Since a a 
xx XY 

G(+) = a,axxG(+), where G is an  arbitrary function 

of +, we are free t o  rewrite (52) as 

t a 2 ) x  = a  s + a  s E..V 
(axx xy a+ X Y X  = Y  Y 

I 

The secular behavior of av(2)/a+ and av(2)/a+ is controlled by the 
X Y 

right hand side of (64) and (65) respectively. 

eliminate this  secularity by adjusting A, B, C ,  and D in 

Consideration of either 9 or 9 alone will then give us our wave- 

number shift. 

Hence we will be able t o  

Yx and ,Y . 
Y 

X Y 

( 2 )  ax 
a+ We expand - as a series of traveling right- and left-circularly 

polarized waves: 



I .  
I 
I 
1 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
c 
I 
I 
I 
E 
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(2)  00 ax 
aJr 
- -  - E {rn(cos n + ,  - s i n n + ,  0 )  t P (cos n+ ,  s i n n + ,  0 ) )  

(66) 
n n =1 

If we pick out the fundamental component corresponding t o  the 

right-circularly polarized wave as in (19), i. e. ,  

then it is easy  to verify that 

(68) 

a (cos  J r )  t a ( -  sin 4) = 0 

a (cos 4) t a (- s in  J r )  = 0 

xx Xy 

YX YY 

Thus, (67) is a solution of the homogeneous part of (52), provided that 

w and k satisfy the dispersion relation (21). The components cos + 
in  .'YX and - sin Jr in yy will, therefore, contribute t o  secular be- 

(2 )  av 

and a b  

(2)  av 

a +  
respectively, unless  they are eliminated. X havior in - 

It turns out that  9' and 9 each  contains cos Jr g& sin Jr 
X Y 

terms. The extra terms are brought in through the a/aa operations in 

s 

it is easy  t o  show that 

and s which contribute sin tlJ in yx and - cos + in 9 . Since 
X Y Y 

a (s in  4) t a ( -  cos +) # 0 

a (s in  +) t a ( -  cos 4) Z 0 

xx Xy 

YX YY 

that  i s ,  (s in  4, - cos Jr , 0 )  is not a solution t o  the homogeneous part 

of (52), these  extra terms are not involved in the secular behavior of 
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(2) ax /a+ , We are free, therefore, t o  set B = D = 0 (that i s ,  regard the  

amplitude lat as fixed) which will simplify the calculation of Yx and 

T o  determine the actual frequency or wavenumber shift, we need work 

with only one quantity, say 9 , and require that its c o s  +-proportional 

part vanish. This involves some straightforward but laborious algebra 

X 

( 0 )  ( 0 )  ( 0 )  ( 0 )  (1) which consis ts  of substituting vi , piz , , E , and p . .  
11 

( i j  + z)  into (57) t o  (62), and in (64) t o  obtain YX . 

We find that sx and s take the  form 
Y 

s = K1 COS + 
X 

s = - K 1  s in  + 
Y 

Thus, 

yx = a s - a s =K1{axx(cos +) - a ( -  sin $)} , 
x x x  X Y Y  Xy 

which can be written as  

2 -Q[w’ t k2V2 - Q 2 ]  1 wz (w2 - Q2) e yx = K ~ C O S  + c 2 k Z -  w - k2V2 - Q 2  t 

(72) 

In this case, we see that 9 

and we simply set it equal t o  zero. 

(21), we see that the curly bracket in (72) is non-zero, hence, K1 must 

vanish.  

contains only cos + -proportional terms, 

Referring to the dispersion relation 

X 

We may note that had we used the non-resonant a/aa part of 9’ 
X 

(i. e., the vector (s in  +, - cos +,  0)) we would have obtained 
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1 

1 

w e ( w  2 2  - n2) 
9’ = Kzsinq  -k2V2 -52‘ t 
X c2k2  - w2 

+ 52[w2 t f V 2 -  d]) = 0 

(73) 

Since the bracket in (73) is now identically zero, we would be unable 

to determine K2, thus confirming our earlier decision to  set B = D = 0 .  

The condition K1 = 0 ,  therefore, will  determine our wavenumber or 

frequency shift. 

E. Wavenumber and Frequency Shifts 

We find, for w fixed (i. e . ,  A = 0 ) ,  

a 2 2 2 2  k k V (!2 t o) (c2k2 - a 2 ) w ;  
- -  Ak c - -- - 

k k 3 2 r 2  e2ni w3 (52 - 

k 2 2  V (C  2 2  k -0’) 

w(s2 t 0) 
k2V2(Q t ~ ) ( C 2 k 2 - w 2 )  

(522 - wz) 
0 

(a2 t c2k2  - w2) e 

(74) 
e - 

We can simplify th i s  expression considerably by going t o  the low 

frequency region appropriate t o  cyclotron (helicon) waves in a solid- 

state plasma: 

w2 >> kZ c2 >> n2  >> k 2 2  V where a2  >> w2 , 
e 

and we may use our helicon dispersion relation (23). 

Thus we obtain 

Ak  
k 

(75) 
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Similarly, for k fixed (C = 0 ) ,  we find 

a 2 2 2 2  k k V ( S 2 t w ) ( c 2 k 2 - w 2 ) w 2  ( w 2 t  c 2 k 2  -a2) 
- -  A e e  Ab2 

2 2 2 3  
- - - =  - 

w w 321~ e now (S2 - o ) ~  

2 2  -1 
( c 2 k 2  -a2) t (S22-w2) c 2 k 2  -a2  t u 2  

e ("  c 2 k 2  - w ] . 

In the same low frequency limit (75), we have 

These resul ts  differ with the c a s e  for the standing wave in a bounded s lab 

of plasma where stringent boundary conditions fix k .  Here 4 

16 Following the suggestion of R. Goldman, we can check our resul ts  

(76)  and (78) by appealing t o  the cyclotron dispersion relation (21). 

can  thereby show that  wavenumber and frequency shifts enter in a natural 

way. Instead of regarding (21) as exact ,  we now permit the finite ampli- 

tude effects t o  manifest themselves in the form of a modified dispersion 

relation. 

We 

Thus, we have originally 

w w2 (s2 - w) 
e c 2 k 2  - - = o .  [ (S2 - - kV2] 

In our standard low frequency limit, th i s  can be written a s  



w W2 52 e 
s o ,  (a2 - k2VZ) 

c 2 k 2  - 

or 
W W Z  a k V  2 2  s a 2 - -  e 
cz k2 

Now we assume that a l l  finite amplitude effects  enter through the 

pressure terms and we replace V2 by 2 t o  get 
mn0 

The non-linearities are introduced by letting p become p t A p , w go 

t o  w t A w  (for fixed k ) ,  and k go t o  k t A k  (for fixed a). 

For fixed w ,  we get 

- A k  E -  k2 & 
k 2a mno 9 

and for fixed k, we get 

- N  k2 & A W  - --  
w a' mno * 

Thus, (83) and (84) have the correct sign and their ra t io  has  the correct 

magnitude (see (76)  and (78)). 



CHAPTER I11 

LINE SPLITTING OF PLASMA RADIATION 

IN A WEAK MAGNETIC FIELD 

We turn now t o  the second example of wave motion d iscussed  in 

Chapter I where large amplitude longitudinal waves in a highly excited 

coll isionless plasma combine, in the presence of a weak magnetic 

field, to produce electromagnetic radiation which is split in frequency. 

A. Basic Equations and Spectral Densities 

In the following calculations we  use an expression derived by 

Dupree 7 y 1  

frequencies near w and 2ue by Tidman and D ~ p r e e . ~  Similar formulas 

can a l so  be derived by the technique of Birmingham, Dawson and 

Oberman.' 

for the emission of radiation by a plasma and reduced for 

e 

We have, from equations (14), (1 5) and (1 6) of R e f .  5, 

2 I k.50 I 
s (k, a') sii(-k' W -u') k4 ee 

do' 
--oo 

27 
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dU where dt (K) is the rate at which the energy density U( &) of a trans- 

verse  mode with a propagation vector &, frequency w ,  and polarization 

vector L~ ( 1 ~ ~ 1  =  IT) , increases  in the plasma. 

emission intensity, dU/dt must be multiplied by the density of s ta tes  

d2n(  K)/du do  where du is an  element of solid angle in the direction & 

and w and K satisfy the dispersion relation for transverse waves. 

We note that the emission of radiation (Equations (86) and (87))  is 

2 To obtain the actual 

directly related t o  the spectral  density S (k, w ) , e tc .  , for the colliding 

electrostat ic  waves, and we will shortly see that th i s  seems entirely 

reasonable. Whenever electrons in  the plasma are accelerated by an 

e lec t r ic  field (in th i s  case, electrostatic oscil lations),  they radiate by 

the process of bremsstrahlung. 

outgoing radiation are affected by the collective properties of the plasma 

4 

Both the incoming electr ic  field and the 

which manifest themselves through the dielectric function or Landau 

denominator 8 ( k ,  i w )  . A s  noted in Chapter I, it is primarily th i s  

quantity, through R e (  a), which is modified by the inclusion of a mag- 

ne t i c  field. 

f luctuate randomly they will radiate with random phases  and the averaged 

emitted radiation will be negligible. The lack of randomness between 

two different electric f ie lds  or number density fluctuations can be ex- 

pressed in terms of the spectral  density. This is the Fourier transform 

of the autocorrelation function, which  as  its name suggests ,  attempts t o  

measure the correlation between two like quantities. 

If the electrons respond t o  incoming electr ic  fields that 
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Thus, i f  

for example, 

0 ( 5 ,  t)  and 0 ( 5  t r ,  t t T)  are two vector operators, 
(Y P 

then the autocorrelation function 

T/2 1 
= l i m  - d & $ /  d t O a ( x , t )  0 ( Z t L ,  t t T )  

V -T/2 P 
V‘W 

and the spectral density 

An equivalent way of writing Equation (89) for the normalized fluctuating 

number densit ies 

n n S ( k , ~ )  P QP 

is 

th  where n is the average number density of the CY species and we assume 

that the electrons and ions have equal  and opposite charges with 

(Y 

n . = n  = n  . i e o  

The spectral densit ies S and Sii are plotted as  functions of fre- ee 

quency in Figure I11 for wavenumbers k < k and k > k for E3, = 0 

and for distribution functions that are approximately isotropic. We note 

D D 

that for k < kD (i. e., the region of k-space where longitudinal oscil la- 

t ions are not heavily damped) the spectral density S has  a sharp ee 

resonance at w w , and both See and Sii have a low frequency res-  
e 

onance of approximate width kVi . Here V and V .  are the electron and 

ion thermal velocit ies and k = (4~re’n , /KT)~ is the Debye wavenumber. 

These resonances correspond to the presence of longitudinal electron and 

e 1 
1 

D 
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ion plasma oscil lations in the fluctuation spectrum of the plasma. 

k > k 

sharp resonance in S at w 2 w vanishes.  

For 

where these  plasma oscil lations become strongly damped, the D '  

ee e 

The inclusion of the magnetic field changes the location of th i s  

resonance, corresponding to the direction of propagation of the longi- 

tudinal wave (see Chapter I). Now we obtain a resonance in S (k, w) 

a t  = wo where 2 w2 t 0' sin' 8 (see Figure I). The width of this  e 

sharp resonance is not increased in lowest order, as will be shown in 

ee 

the weak field expansion part (section B). 

The bremsstrahlung emission from the accelerated electrons can be 

a part from the wavenumber range conveniently divided into two parts: 

k > kD and a part from k < k The first  range gives  the usual colli- D '  
20 

sional contribution to the emission (Dupree," Dawson and Oberman, 

Chang, Oster ), and the second range the wave-emission due t o  

scattering of electron plasma oscillations by ion waves and by other 

electron waves. Thus, we obtain our greatly enhanced (for some 

21 22 

non-thermal distributions) emission of radiation a t  approximately we 

and 2~ . e 

Returning to the spectral  densit ies,  we find that the expectation 

value of the fluctuating number densit ies <dn 6n > can be obtained 

ei ther  by the formalism of Dupree "'18 or by the t e s t  particle method of 

Rostoker 

C U P  

23 for the case when the ions are considered immobile. The 

formulas for the spectral  densit ies are 



31 

and 

where the arguments of all functions on the right of (91) and (92) are 

(k, i w )  . The longitudinal dielectric function &' is given by 

where 

and 

for R e  (p) > 0 and "cy = ecylBo(/mcyC. The distributions f are assumed 
cy 

t o  satisfy the requirement (from the linearized Vlasov Equation) that 

cy 
af 

av cy cy 
(E X BO) - = 0 (i. e., f is gyrotropic and is of the form f ( v l I ,  v:)). 

A l l  directions are specified with respect t o  the uniform magnetic field Bo 

as indicated by the subscripts I I I I and '1' (refer t o  Figure I). In 

(94)  and (95)' J is a Bessel function of order n .  n 
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B. Weak Field Expansion 

In th i s  particular problem we are interested in a weak magnetic 

field and we make the appropriate expansion of the functions 8 ,  

L (k, i w ) ,  and U (k, i w ) ,  in powers of s2 . We may do this  by 

writing 

CY CY CY 

(p  t ikI Iv l l  t i n n  ) - '=  sr) dp e x p ( p  + ik v + i naCY)P  II II 
-00 

CY 

and using the identity 

00 2Tr 
2~ 2 einYJ:(z) [ ;lz) = d+ (coi +) exp - i z [s in  (4- v) - s i n  +] 

n=-m 0 

Since f (E) is gyrotropic, we may perform the + integrations in  (94) 
CY 

and (95). Then, using (96), we interchange the summation and integration 

operations and use  (97) t o  get 

00 00 n 

2T i k ,  v ,  I I  J d + e x p - -  [s in  (+-nap) - sin $1 , (98) 
0 cy 

n 

and 
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Interchanging the (3 and + integrations in (98) and (99) we will be 

concerned with terms such as  

where 

We expand the square bracket term in (100) and get 

where 

Letting CY = p t i k v t i k v cos + for convenience and integrating 

g(+) successively by parts, we have 

II I1 1 1  

(1  03)  g(+) = ; 1 - cyz 1 ($) -I- $3 (qT) a 2 h  - ;4(*) 1 a 3 h  -I- . . .  
p =O p = 0  p = 0  

Evaluating th i s  series,  we find 

k2 v2 s in2+] 1 
-3 t Q2 [T ikLvL c o s  + 

t (higher order terms in SZ ) (1 04) 

( Y C Y  

CY 

2ll n Note that the integrals .f d+ (cos +) vanish since sin + is 
0 



odd around + = TT and a3 and (cos +)n are even (n = 0, 1 ) .  Thus our 

first correction t o  g(+)  is of order S2' . 
a 

Equation (98) now becomes 

] ... ) 9 

i k  v cos + 3 k2 v2 sin' + - 
a ( p t i k l l v l l t i k  v ( p t i k l l v l l t i k  v cos  4 1 ) ~  

which can be written in  Cartesian coordinates as 

00 c 

(1 06) 

Similarly, 

To the lowest order of significance for our problem we find 

and 
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and 

We have included only the electron contribution in  (1 10) since m .  >> m 

A s  usual, the reduced distributions F are defined by 

. 
1 e 

cr 

and 

Here U is an average drift velocity along Bo for the electrons and VL 

is the thermal velocity for each  of the two directions perpendicular to 

- 0  B * 

Since we are only interested in the wave-emission contribution t o  

the bremsstrahlung in the neighborhood of w 

approximate expressions for the spectral densit ies S , S for 

k < kD and at w w and 0 respectively. We make the same approxi- e 

mations as those made by Tidman and Dupree 

may write 

and 2we, we need only e 

ee ii 

5 and for our purposes we 
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W wz a' sin' e 30' e - 4 ( k' Vz t kZ V' t k' U2) 
II II I1 

A s  in R e f .  5, we have neglected the finite l ine width of the Landau 

damping decrement in (1 13) ( y = (*w;/2k2) F' (w/k) = (we/2) Im( 8 )  ). L e 

The resonance denominator in  ( 1  13)  can, therefore, be represented by 

L 6-functions for purposes of integration. 

to  be very small we do not want it to  become exactly zero, 

Note that while we desire y 

as th i s  

would indicate the onset of instability. We see, also,  from the structure 

of (113)  and the above approximations, that  the influence of the magnetic 

field does indeed first manifest itself in the R e  [ 8' ] , thus justifying 

(108), (109) and ( 1  IO). 

We obtain 

- [ 6 ( w  + 0 0 )  -t 6(w - W O ) ]  

where 

1 

wo = {w' t Q 2 s i n 2 8  + 3(k' V2 t kZ V2 t k2 U') - 2 w  k U}" . 
e II ll It e It 

In Equation ( 1  14), therefore, S2 = l Q e l  and we have used the inequalit ies 

~ 1 '  <<w' , )Im ( 8 ) )  << 1 .  e 
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Similarly both the ion and electron spectral  densi t ies  at low fre- 

quencies can be obtained by taking the l i m i t  m - 0 0  and approximating 

with a 6-function at w = 0 .  Thus, we  have S . .  (k, w z 0 ) % - d(w) 

i 
TT 

11 n0 
= s (k, a z o ) .  ee 

C. Wave-Emission Formulas and Small Wavenumber 

Magnetic Field Effects 

Equations (86) and (87)  give the rate of excitation of a radiation mode 

of wavenumber K and polarization L ~ .  It is convenient t o  average the 

polarization vectors ro in the plane perpendicular to  for any given 

- K .  We choose, therefore, a coordinate system with K along the polar 

(z) axis and io in  the xy plane. Then if  ro makes an azimuthal 

angle 4 about measured from the plane defined by k and & we 

have 

and 

s ince l e o 1 2  = 2 ~ .  Next we define the emitted intensity - 

dZ ergs (sec. cps.  sterad)'' , d' I 
d w  dc 



3 8  

where the density of states per unit solid angle in the direction 

the radiation field is for each  polarization 

for 

- - - -  K2 dK 
d w d r  8rr3 dw 

- d2 n 
9 

and the summation in ( 1  18) is over the two transverse polarizations. 

Using ( 1  18), we substi tute the reduced forms ( 1  14) and ( 1  17) into 

(86) and (87 )  and integrate over a' (the frequency of the longitudinal 

waves) t o  obtain the radiated intensit ies near w 

wave -emission becomes 

and 2we. Thus the e 

and 

I 

where we have used the symmetry of Fe  (see ( 1  1 1 )  ) with respect t o  the 

s ign of its argument. 
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In (120) and (12 l ) ,  we can a l so  uti l ize the  &-functions implicitly 

t o  simplify these  expressions.  That is, in (120) w = wo w , and e 

in (12 l), w = 20, 2 2w . e 

Hence 

e' w K2 dK 

E ( 2 ~ ) ~  8 do k<k, 

wave 

e - s  (2) u 

and 

We now have (122)  and (123) t o  represent the emission obtained when 

ion or electron plasma oscillations collide nearly head-on with other 

electron plasma oscil lations (refer to Figure 11). 

We shal l  consider only those si tuations in which the major contri- 

bution to ( 1 2 2 )  and (123) occurs for small longitudinal wavenumber k. 

In th i s  range, therefore, we may make an important simplification in the 

dispersion relation ( 1  15) and neglect thermal effects and drifts. 

the magnetic field effects dominate in  th i s  region, although the field is 

Thus 

I 
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still ‘weak’ in the sense  Q‘ << u’ . 

itself, therefore, in the modified dispersion relation 

The magnetic field manifests e 

Similarly, the dispersion relation for electromagnetic waves is 

w’ s a‘ e -t c’KZ f (G) COS + , 

where in  (124)  and (125)  the  angles e and + are those between k and 

Bo and between K and Bo respectively (see Figure 11). The f signs 

in (125)  denote a s m a l l  splitting for the two polarizations, and it should 

be noted that th i s  correction term in (125)  for S2‘ << u2 is valid only e 

- - 

- n  for Jr such tha t  cos + > 2~ . 
e 

Next, we consider the density of s ta tes  factor (K’ /8v3)(dK/dw) 

in  (122) and (123) .  From (125)  it follows that 

w2 52 1 

cos  Jrp . (a’ - u’ T - e - - - - -  
do du 8v3 dw 8 =3 c3 e w 

0 n cos + e 
- K2 dK - d’ n 

w in  (123) A s  a consequence of the &-function 6(w - 2wo) and uo 4 

w e  can write 

e 

6- a‘ e -- N K‘ dK - 
8r3 dw 4*3c3 - 

Similarly in (122)  we use the 6-function 6(w - w o )  and wo w to 

obtain 

e 



0 1 e -- KZ dK - N - 3 3 l o e n c o s + ) ”  9 

8 2  d o  8.rr c 

since for nearly all 8 and $ we have Q 2  sin’ 8 << I w e Q  cos  +I  . From 

the square root in (126) we note that only one polarization propagates for 

the fundamental. The other polarization must, therefore, be excluded 

from the summation in (121) .  However, both polarizations at o E 2 w  

propagate and have a density of s ta tes  given by (127).  

e 

Thus we may 

write (122) and (123) as 

and 

2 w t Q 2 s i n 2  e . where w0 E 
2 

e 

We see that the angular dependence of oo introduced via the mag- 

ne t ic  field now operates through the 6-functions in  (129) and (130) t o  

re la te  the emitted frequency w t o  an equivalent angle. Thus, the 
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angular dependence of the reduced distributions will  directly affect the 

frequency dependence of the emitted radiation. 

D. Angle Integrations and Some General Considerations 

In order t o  illustrate the effects  of the magnetic field more clearly 

and d iscuss  the l ine shape of the emitted radiation, it is convenient t o  

carry out the angle integrations in (129) and (130) .  Thus (129) becomes 

' w l ( s 1 , C l ; w )  J 

where 

cos2 $1 

COS e -cl 
sin e - S1 

with cos  8 and s in  8 in the F, functions replaced by C1 and S1 

respectively.  We have 

1 2 2 z  1 

s1 = $0 - w e )  

(133)  
1 c1 = E(" 1 2  - 0 2 + w  2 2  ) 

e 

1 

with W1 non-zero only in the frequency range w < w < (w' t a)'. e e 
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The angles 8 and + have the same meaning as before (see Figure 11). 

Similarly (1 30) becomes 

e2 6 w 2  K’O 

(z) - 4c3 ( 2 4 3 ~ 2 c 2  

wave 
e d2 I2 

WZ(S2 9 c2 i w) N 

1 3 
8 {c; cos2 + t TS; sin2 + - C: cos4+ - -si sin4+ - ~ S ; C ; C O S ~ +  s in2+)  , 

where 

COS e-c2 ( sin e - s2) 

and 
1 sz = 1 2  (w - 4 w e )  2 z  

1 
c 2  = - 1 (4n2 - w2 t 4 w  2 2  ) 

2Q e 

1 
Here W2 is non-zero only in  the frequency range 2 w  < w < 2(02 t Q2)‘ . 

e e 

Now consider the weighting functions W1 and W2 . For isotropic 

distribution functions, Fe is  not a function of the direction of k; W1 

and W2 , therefore, will be independent of S1 and C1 , and SZ and C 2  

respectively. 

quency range, since they vary weakly with w .  This can be seen from 

consideration of (132) and (135) wi th  some appropriate isotropic Fe . 

If we use Maxwellians, for example, as  our original distribution (e. g. ,  a 

Thus W1,z will be almost constant over the allowed fre- 
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thermal part plus an energetic part), we will find t o  a good approximation 

that W1 a: Note that both (131) and (134) already and Wz a w - ~  . 

have a factor w in the numerator. The divergence at the upper edge of 

both of the differential intensit ies (131) and (134) originates in the 

factors Cy’ and CT1 respectively. 

the differential intensity for the fundamental are illustrated schematically 

in Figure IV. 

in that  there are more longitudinal k vectors propagating at large angles 

t o  Bo than at small angles to B o .  They contribute a finite but s m a l l  

The weighting function wW1 and 

The terms C;’ and C;’ derive from a solid angle effect 

- - 
amount t o  the observed intensity in  any finite frequency band A a  around 

(0’ t 52’)‘ and 2(w; t 52‘)” a s  can be seen  by taking the integral over w 

over the factors (52’ - w 2 t w e )  ’ ’’ and (452’ - w’ t 4w’ )-” in (131) and 

( I  34)  respectively. 

1 1 

e 
1 1 

e 

Thus we see that isotropic distributions in the presence of a m a g -  

ne t ic  field lead only t o  broadening of the emission l ines  through almost 

uniform enhancement of the emission over the allowed range of w .  For 

a clearly observable splitting, we want the intensity at the outer edges 

of the two l ines  t o  be at leas t  one order of magnitude greater than at the 

centers of the l ines.  This will be true in general i f  

(137) 
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) = w and 2 w  for W1 and Wz respectively, e where w ( = a  

au ( = w  

L Lower e 
2 I 

) = (a2 t a2)’ and 2(a2 t a’) respectively, and Upper e e 

Midrange e 4 w  
respectively, for the a2 and 2we t 2~ n2 ) S o  t -  

e e 
OM ( = o  

range of k vectors in  which electron plasma oscil lations are enhanced. 

Note that the observed intensity at the upper edge of the l ines  is helped 

by the solid angle effect, thus reducing the magnitude requirements on 

Clearly, we may achieve condition (137)  only i f  we use distributions 

which are anisotropic in 8 . In the following calculations we shal l  use 

a tenuous f lux of superthermal electrons coexisting with a thermal or 

Maxwellian background. 

driving mechanism for the enhanced emission and, hopefully, the requisite 

anisotropy. Thus, i f  we have an anisotropic superthermal distribution 

which concentrates the longitudinal k vectors in the two directions 

parallel and perpendicular t o  Bo, - we may obtain an  observable splitting 

of the emission l ines  through the preceding formalism. 

These energetic electrons provide both the 

We shall consider distributions of the  general type that have 

TI > > T and are also drifting through the background plasma along Bo - 
(all directions are with respect to  Bo). - We do not know, of course, the 

II 

deta i l s  of the electron distribution function at the source of a Type I1 

radio burst. However, the above distributions seem physically plausible 

and can explain the observed spectral features of the radiation. 
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E. Results for a Drifting Maxwellian 

We now consider specif ic  distributions which fall into the general 

Thus we will  f irst  assume a distribution of category d iscussed  above. 

the following form: 

where V i  > > V 2  , V' >> V,f , and we also choose ( 1  - P )  << p 2 1 . 

Here, v and v are the electron velocity components parallel and 

perpendicular to Bo respectively. Thus the superthermal electrons form 

a sombrero-like distribution in velocity space drifting through the thermal 

background of electrons with a drift velocity U of such a magnitude that 

the distribution is stable.  

e 

- II -1 

- 

We insert  (1  38) into (1 11) and obtain the reduced distribution function 

F used in W1 and W2 (with the  appropriate arguments), e 

= FT t FE (139) 

and 
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When these functions are used in Wl,2 , kL = k s i n 8  becomes kS1,Z 

and k , ,  = k cos  8 becomes k C 1 , ~  respectively. 

We now want t o  obtain approximate expressions for the W functions 

for both the fundamental and second harmonic to  determine whether or 

not observable splitting is generated. In the following discussion, how- 

ever, our general remarks will apply equally wel l  t o  either line. 

need, therefore, only consider the fundamental in detail  t o  i l lustrate our 

points . 

We 

For the fundamental, therefore, consider first 8 = sr/2 . Then our 

expressions simplify to  

In this  case, 

and 

w 1 0 and FE = - - kVf 'E ' 
with F' = -- 

kV2 FT e T 
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Thus (132)  can be written (for 8 = ~ / 2 )  

whicn in turn can  be written as 

where 

and 

FE 
FT 

FE 

FT 

1 t -  

t -  
vi  - 
V2 e 

Thus, we have t o  a good approximation 

Examination of (146)  and (148)  for typical parameters such as  

(1  - p) ~ 0 ( 1 0 - ~ )  and if//": - 0(103) , shows that  G(k)  may be 

represented schematically as shown in Figure V.  Note, k l  is chosen 

- 1 ,  
FE vi ' k2 is chosen t o  yield - FE - , hence G(k1) = T ;  so that - - - - v2 FT e FT 

hence G(k2) = 2 V 2 h i ,  with G(kD) = V2/V4.  . Typical values for kl 

and  k2 (for the above values  of ( 1  - p) and V' hi ) are - kD/5.5 

e e 



and - k /4 respectively, where kl and k2 are given by D 

and 

Unless otherwise indicated, all logarithms are t o  the base  e . 

It seems reasonable, therefore, to divide the k integration into 

two parts. Thus we write 

where 

Gl(k)  = 1 

and 
V2 

V i  k2 - k D  
G2(k) = - e [k - 2kD t kz] . 

We have, therefore, 

where we have taken 

We  can assume 

k: V t  2 
3 0  Wl(1 ,  0 ,  Wu) s - - 
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providing k:V' > k b V i .  This condition, which can  be  restated as  

, is easi ly  satisfied.  
z 

VI" / v i  
In a similar fashion, we have 

kD k V' 
, wM) = kdk  - {G+(k)  +G- (k )}  , (157) 

1 
w l p ,  d - z - d z -  - 0 W 

where 

'T G (k) , 

v .  - 
V2 e 

and 

(159) 
2 

W 
( 1  - P) ve 

- N  - 
FT 

T o  maintain a stable distribution, we shal l  require that kDU/"JZwe 

is < 1 in this calculation. Thus 

2 

( 160) 
e w 

V 

e 2k2 V2 - FEf = ( 1  - 
FT 

Over the k range that contributes the dominant part of the integration 

t 
G (k) - G-(k) , and we find 

which meets the general requirements stated in the previous section. 
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We see that the Vi factor in (156) can lead t o  a considerable en- 

hancement in emission as compared to thermal equilibrium. 

Now we consider 8 = 0 (i. e., Wl(0, 1, a,)) 

where now 

f 'T G (k) = f 

e 

and 

Recall Vi << Vi . 

as Vz . Clearly, the only contribution which is comparable to (or larger 

In fact, Vf may be  of the same order of magnitude 

t , wM) must come from G (k) 1 than) W1(l,  0 ,  m u )  and W1 

when the denominator of (163) has  the opportunity to become very small. 

Thus, 

kD kVIf 
Wl(0,  1, wL) 2 kdk  - Gt(k)  

w 
0 

At th i s  point, it is more convenient t o  rewrite Wl(0, 1; wL) in its 

original form as indicated by (132), namely, 



w We take k F  (k, -) to be a very slowly varying func e -  k 
ion in he 

w vicinity of the minimum of F' (k, -) and Taylor expand F' e -  k e 

imum which occurs at k = ks . At this wavenumber, for which - - - 0 ,  

about its min- 
aF; 
ak 

the distribution is verging on instability. That is, k is the "most 
S 

nearly unstable" wavenumber. We do not actually allow F' to vanish, 

but it can become arbitrarily small (see Figure VI). 

e 

Note that although FH vanishes at k = 0 ,  the ratio F / IF' I is e e 

wel l  behaved and vanishes  itself at k = 0 .  

Thus, we may write (166) as 

kD ks Fe (k = ks) 
W1(O, 1; t) dk a2 F' (167) 

( ak') k =ks 

0 Fk(k=ks) + T ( k  1 - k  )' - 
S 

in the neighborhood of this  critical wavenumber, as th i s  yields the 

dominant contribution t o  Wl(0 ,  1; wL) . Integrating, we have 

I 
where for convenience we have written A = (F,(k = ks) I . We can easi ly  

see that i f  A is sufficiently small, i. e., for an almost unstable distri- 

bution, W1(O, I ;  wL) may become extremely large. Collecting our resul ts  

(156), (161) and (168), we can sketch the behavior of W1 for the distri- 

bution (1 38) in Figure VII. 
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The question now ar i ses  as to whether there is sufficient area under 

the spike generated by A-' in Figure VII. That i s ,  although the differ- 

entia1 intensity - appears to  vary with w in the desired way, there 

may not be sufficient energy in  the lower part of the l ine for the splitting 

to be observable. We must consider the fact  that  an  actual detector 

would, in effect, integrate th i s  differential intensity across  a finite fre- 

1 

d2 11 
d r  dw 

quency band Aw. Thus, we wish to examine whether or not there is 

sufficient enhancement over such a finite interval. 

The motivation for such a query a r i s e s  from Section 5 of Tidman 

5 and Dupree' s paper. 

Maxwellian plasma was studied. 

number first  became unstable (similar in spirit to our case) the additional 

integrated contribution t o  the emission was  uninteresting (i. e., no large 

increase).  

diverged at the unstable wavenumber f o r  this problem. Tidman and Dupree 

There the case  of an electron beam traversing a 

It was  found that i f  only one wave- 

This was true even though the spectral  density actually 

concluded that one must have a range of wavenumbers verging on insta- 

bil i ty to obtain enhanced emission and we will  consider a situation of 

th i s  type in the next section. 

First, however, we wish t o  study our question about the observed 

intensity in more detail.  

T o  do th i s  we first note that for small but non-zero 8 ,  the right 

hand side of (1 68) becomes a function of O2 only. This can easi ly  be 

s e e n  by referring to (1 39) and (1 40)  and the definitions of k,, and kl . 

Thus we expand A around 8 = 0 by writing 
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By vir tue of the relationship w2 = a' t S2' sin' 8 (for the fundamental), e 

we may replace our frequency integral Jdw by an integral over 8 , 

S2' 

e 
namely J 8 de , which is valid for small 8 .  

Examination of (1 68) and (1 3 1 )  for s m a l l  8 shows that the dominant 
1 

contribution will  indeed come from the A '' term in (1 68) and we need 

consider only th i s  term. Hence, let 

e 

0 w) d A ( e = O )  t 8 ' A  
( 1  701 8 de 8 de C 

e 
J =.f \ -  . - = I  

. The exact We can  see directly from (170) that i f  A = 0 ,  J = - 

integral is, of course, 

8, 

K 

where 8 represents the upper bound of the spike. To reassure ourselves 
C 

that  the contribution of the spike is not significant, we must check the 

magnitude of A .  A s  long as A (or a) is not a very s m a l l  quantity, 

there will be no  spectacular increase of emission. 

For convenience, let 8' = x  , then 

A =  

and we have for s m a l l  

- 

x=o  

aF' (x, k = ks) 

e 
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2 Pa 
(2rr)'k V3 s e  1 exp [ - -1 F' (x, ks) E - e 

(1 - p) (a - ks U ( l  -')I - 2 

21+ exp 

1 

(2rr).,(,;, t V i  (1 - 2 )  

= Fi(ks) t FL(x, ks) . 

2 
( w  - k s U ( l  -')I 2 

- 
2k2 S (Vf. t V,f(1 

I 
Noting that Fe(ks, x = 0) = A , we can  write 

( A  - Fi) ksU 3(w-ksU)(Vf - V i )  (w-ksU)'ksU 
- 

A = I (a-ksU) (r - 2v,;l 2kZs vi 
( w -  ksU)3 ( V i  - V i )  

t 
2k; vi vi 

Since V' >> V i  , we have 

wi th  

T o  estimate the magnitude of A ,  we need the magnitude of k s U .  

program is t o  use the definition of ks as the wavenumber at the minimum 

Our 
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of F' t o  obtain its value, and then l e t  A -. 0 t o  get an upper bound on e 

the U required to just  maintain stability. From - - - 0  at k = k  , w e  
aFg 
ak S 

obtain 
1- 2 

D K 

k2 -k2 ( 1  - p) - ' exp ( - - )  . 
2kS 

S D 

For example, if (1 - p) - 0(1OW2) this yields k - . 2 6  k D .  With the 
S 

requirements that we imposed to  find (177), namely that  k U - o and 
S e 

-Ve , this  places U > - 3 . 8  V . Now we must verify that th i s  is e 

consistent with our stability requirement that A not vanish. The 

limiting case of A - 0  with ks - .26 kD leads t o  (k U - 
s max - .06 which certainly satisfies the condition that ksU - W  . 

U 

Thus, e - 4ve and we have found a consistent scheme of approximating max 

these transcendental equations which maintains stability. 

Returning t o  (175) and (176), we see that the dominant terms in A 

give 

which is not a s m a l l  quantity. With our previous numerical values, for 

example, A - 1.4-1 .5 .  

T o  review, we have shown that (as in Ref .  5) distributions which 

have only one wavenumber first verging on instability do not yield suf- 

ficient enhancement. The increase of emission over that due t o  thermal 

fluctuations is not large enough to  give an observable splitting. 
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F. Results for a Flatter Distribution 

Now we turn to a distribution which we hope wil l  provide more 

enhancement. 

wavenumbers t o  first verge on instability. Thus we consider a distri- 

bution which is flatter than a Maxwellian in y . We try, therefore, 

a drifting pancake -like distribution 

A s  discussed previously, we require a whole range of 

Here, as  in section E, V i  >> V2 , V i  >>$ 

I(x) = 1  if x > 0 .  A s  before, (1 - p) << p 
e , and I(x) = 0 if  x < 0 , 

1 and all directions are 

measured with respect  t o  Bo . - 
From (179) we obtain 

kllU - kllVll - - '( f i k l l  

where @ is the error function, 

@(x) = - " J  
G o  

A x d t  e-t2 

In order to d iscuss  F near E 
and  make a s m a l l  x expansion. 

= F  t F E ,  T 

(181 

TT e = -  it is convenient t o  le t  x = cos 8 2 '  

De s ig nat ing 
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hence 

Thus, we find 

which is identical to (141)-(143).  We obtain, therefore, the same result  

as  in section E, namely 

where k l  is defined by (149) .  

, we can obtain an expres- 1 
' OM 

In order t o  d iscuss  W1 

sion for F based on the point that kllVII /kLVl is a small quan- 
TT 'e z z  

tity. We rewrite F so that E 

< <  1 .  and A = - VI1 k U / 6  - w where y = 
kVl  fi VI 



An equivalent expression for (1 87) is 

2 

0 

- ( e 

where we shal l  let 

0 

For small A ,  we expand t o  get 

Thus, in (1881, 

and we find 

We see that (192) is exactly the FE which is obtained from (139) 

ll when 8 = - 
section E t o  the effect that 

and Vz >> Vt . Thus we simply quote the results of 
4 1 

We are left with the task  of examining the situation for Wl(0, 1; o ) 1 

(i. e., 8 - 0). From either direct examination of (180) for k1 - 0 , or 

from (1 11) with 6(u - v,, ) ,  we obtain 



60 

where I is the s tep  function used i n  (179). For kl = 0 , we have 

1 - - -is? {€)(;-[v,, t U ] ) - 6 ( ~ t [ V 1 ,  -U])]. 
FE 2Vll 

In the region k c kl where 

1 
we can approximate F / I Fe I by e 

Similarly, 

Note that the superthermal particles do  not contribute t o  the damping in  

th i s  case. 

Using (1 97) and (1 98) in  (1 32)  we have 



0 w where k2 = and k3 = . From our requirements, these  

are very narrow regions of integration. 

the exponential; k does not change very much throughout the region by 

comparison. 

VI1 + VI, - 
The dominant factor is, of course, 

We do not incur too large an  error if we write 

where x = exp (,+) and XI  , x2,  and x3 have the respective k' s 

in the argument of the exponential. Since x2 >> x3 >> XI , the dominant 

term is clearly 

d2 I - 
du dw Thus, from (131) and the exponential in (201)  we see that 

can  be greatly enhanced at the lower edge of the line. 

sect ion E,  all our preceding and subsequent general arguments apply 

equally well  t o  the second harmonic. 

Note that, as in 

Again, as in the case for the drifting Maxwellian, we must confirm 

whether or not there is sufficient area under the W1 curve (i.e., the 

total energy) for the splitting to be observable. 

We are interested, therefore, in the effect of taking 0 t o  be small 

but finite and integrating across  a finite occ 8 interval. We make a 

s m a l l  0 expansion of the 0-dependent function in (180). Designate 

h(8) such that 
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We use 

h(8) h(0) t e ( & )  t e 2 ( 9 )  , 
e= o e= o ae 

since it turns out that  (ah/ae) is zero. Thus, e= o 

t (VII - U ) b  (VI, - u t ) )  (204)  

Since (1 97) now becomes 

substitution of (205)  in  (132) yields 

Assuming ( U  t VI, )2  >> V' , we have 

AS i n  section E,  we now integrate across  a finite frequency interval with 

./ d w  a ./ Ode. Define K such tha t  
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where eo measures the extent of the spike in W1 . Hence, 

For ( U  + )"A: of the order of 2 5 ,  for example, we see from (209) 

that K is still greater than one half of the value obtained by assuming no 

decrease with 8 (i.e., KO = W l ( 0 , l ;  ~ , ) 8 ; / 2 ) ,  even at eO-lOO , 

We have confirmed, therefore, that this  case generates a large increase 

(compared t o  thermal) in the total  energy emitted in the lower frequency 

part of the line (see Figure VII). The splitting thereby becomes clearly 

observable. 

To recapitulate, the essent ia l  difference between distributions (1 38)  

and (1 79) is that (138) leads t o  a situation in  which only one wavenumber 

k = k 

of k' s to first border on instability. The f la tness  of f in (179) indicates 

that  the superthermal electrons in section F do not contribute t o  the 

can first verge on instability, whereas (1 79) allows a whole range 
S 

E - 

Landau damping of the plasma oscillations whereas the energetic electrons 

considered in section E do. 

the section F case. 

Hence, the greatly increased emission for 

G. Application t o  Type I1 Solar Radio Bursts 

Type I1 solar radio bursts have two main characteristics, as exhibited 

in a frequency versus  time plot (see Figure VIII). One feature is the 

presence of two broad frequency bands, with the upper band at  
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approximately twice the frequency of the lower band. The other major 

feature t o  be noted is the decrease in frequency of each  band over a 

period of several  minutes. 

The frequency of the lower band has  been interpreted as being 

associated in  some way with the plasma frequency (a2 = 4rezno  /m) 

and that of the upper band with 20,' hence their designation a s  the 

fundamental and second harmonic respectively. 

frequency is then taken t o  reflect a lower density 

region with increasing t i m e .  The picture which emerges, therefore, is 

the commonly accepted one of some disturbance propagating up through 

the solar  corona into regions of lower and lower density and hence, lower 

and lower w . If one picks a model for the variation of coronal density 

versus  altitude above the photosphere (e. g., the Baumbach-Allen 

values)  an estimate can  be made of the velocity of th i s  disturbance. This 

value turns out to be of the order of 1000-1 500 K m / s e c ,  i. e., slightly 

sub-thermal with respect  t o  the electron thermal velocity V , but super- 

sonic  with respect  t o  ion thermal speeds (note T l o6  O K ) .  For 

th i s  reason, one expects that  Type 11's originate from a plasma wave of 

some sort, perhaps a shock wave. These Type I1 events,  then, are often 

denoted as "slow-drift" bursts,  in contradistinction t o  Type 111's which 

are  apparently characterized by bursts of re la t ivis t ic  electrons traveling 

in a stream. 

e 

The diminution in 

(no ) in  the source 

e 
24,25 

e 

corona 

Specifically, we now consider the model discussed recently by 

in  which it is assumed that a col l is ionless  shock wave is 26 Tidman 
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generated by the upward expansion of plasma from a flare site. 

absence of a guiding theory of plasma shock structure, it is assumed 

that  the coronal shock wave has  some of the features experimentally ob- 

served in the Earth 's  bow shock wave in the solar wind (Ness ,  Scearce, 

and Seek ). The shock transition, therefore, is likely t o  be turbulent 

in nature and t o  propagate a t  some arbitrary angle to any relatively 

ordered magnetic field which exists ahead of the front. 

In the 

27 

In the turbulent region behind the col l is ionless  bow shock front of 

The gen- the Earth, fluxes of energetic electrons have been observed. 

erating mechanism for such fluxes is not yet clear, although some kind of 

s tochas t ic  acceleration process in the region of turbulence behind the 

front may be involved. We assume that in  the coll isionless coronal 

shock wave, a similar condition of disordered plasma and magnetic field 

together with a flux of energetic electrons a l so  exists (see Figwe TX). 

We sha l l  now consider our previous calculations in the context of these  

assumptions t o  see how many of the features of Type I1 events we can 

explain. 

26 It has  been shown by Tidman that with plausible fluxes of super- 

thermal electrons in the excited plasma, total  intensit ies for the two- 

harmonic plasma radiation can be obtained which are in agreement with 

those  measured in a Type I1 disturbance. This calculation assumed iso-  

t ropic  electron velocity distributions f ( ! V I )  and no magnetic field. e -  

If we now assume that the superthermal electron distributions are 

s o m e t i m e s  of the "drifting-pancake" type as in (179), then we have 
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shown that substantial  amounts of radiation are indeed generated at 

and "2" 

Q2/ue for the second harmonic. 

typical Type I1 event, magnetic field intensit ies can be calculated for 

the source region (see Table I). The values  seem of the right order of 

magnitude although they may be a little high (for the validity of the weak 

field approximation used in our calculations), particularly for the funda- 

mental. 

w e 

with a splitting that is about Q 2 / 2 w ,  for the fundamental and e 
25 From the observed splitting in a 

The altitudes above t h e  photosphere were calculated assuming 

that the source region is propagating out along a coronal streamer (following 

a field line) in which the local electron density is 10  times the Baumbach- 

24,25 Allen values . 

TABLE I 

Magnetic Field in  Source Region Dedwed  from 
Line Splitting of the Fundamental 

~ ~~~ 

Observed Observed E le ctron Magnetic Height above 
- A" Density Field, Phot os phere, 

no , cm-3 Gauss  Km , M c s  M c s  "e Time - 
2Tr 2lT ' 

120 25 1.8 X l o 8  27 3 x i o 5  

80 10  8 X l o 7  14 4 x i o 5  

40 5 2 x i o 7  7 7 x i o 5  

We note that Type 11's occur much less frequently than Type 111's and 

it seems reasonable t o  expect that anisotropic distributions of the kind 
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proposed in  (179) sometimes exist in the  source region behind the shock 

front. 

the shock wave, when they first  penetrate into the turbulent region, 

accelerate the electrons in  a plane perpendicular t o  Bo and thereby feed 

energy into the v component of t h e  electron velocit ies.  Thus the 

superthermal electrons could be produced with V t  >> V; . Electro- 

magnetic radiation, especially at o - w , emitted by the excited plasma 

in the rearward direction wil l  be reflected by regions of higher density. 

Thus, as it pas ses  back through the source region, part of the energy 

wil l  be available to accelerate the energetic electrons.  

Cyclotron waves propagating up the ordered field l ines  behind 

- 

-1 

e 

In the tangled magnetic field immediately behind the front some 

energetic electrons would be deflected into the parallel  direction. Those 

closest to the front wil l  escape through it and up the ordered field l ines .  

This wil l  tend t o  produce a drift of the superthermal populaticn relative 

t o  the  thermal electrons behind the front. 

energetic electron distribution function should only verge on instability, 

isn '  t it l ikely to actually be unstable over a range of wavenumbers for 

the situation we are considering? It seems to be a question of time scales. 

If a distribution is initially unstable then in a very short t i m e  unstable 

waves have grown to such a n  amplitude that they rapidly drive the dis-  

tribution function back to stability. e 

s o m e  t i m e  double-humped (i. e . ,  unstable), we would expect that in 

only a few periods (0-l ) the bump on the ta i l  would be flattened out 

enough so that the distribution i s  now only verging on instability over 

It is natural t o  a s k  why the 

If, for example, f (v,, ) were a t  

e 
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a wavenumber range. 

natural result  of a drifting instability, as suggested by quasilinear 

theory, and may be a state in which the superthermal distribution spends 

most of its t ime.  

This type of flat distribution appears t o  be the 

In applying our calculations to  Type I1 events,  the following points 

should a l so  be noted: 

(a) Any small amount of polarization which might be originally 

present in  the generated electromagnetic radiation will  be 

almost completely destroyed a s  the radiation leaves the 

turbulent source region; 

(b) the probability of three electron plasma oscil lations com- 

bining (so as to satisfy energy and momentum considerations) 

t o  produce electromagnetic radiation at 30 would seem to 

be extremely low. 

e 

Thus, a model of the type discussed here and in  the earlier paper 

by Tidman 

solar radio bursts: 

and no detectable third harmonic, the total  intensity, and the line 

splitting. 

26 can satisfactorily explain the following features of Type I1 

unpolarized radiation with a two-harmonic structure 
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Figure I. Coordinate System with o Magnetic Field. 



72 

Figure II. Sma I I Electromagnetic Mvenumber Approximation. 
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Figure '111. Schematic Plot of Electmond Ion Spectral 
Densities os Functions of Frequency. 
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Figure IE. Weighting Function and Differential Intensity 
for the Fundomental using a Typical kotropic 
Distribution. 
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Figure=. A Schematic Representation of a Factor in the 
Integrand of W, ( I ,  0 ; wU). 
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Figure XI. Schemotic Variation of IFe'I at 8.0 
versus k for o Drifting Maxwellion. 
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Case 1. A Drifting Maxwellion 
Case 2 A Flo t ttr Distribution 

Figure YE. Weighting Function versus Frequency for 
Two Anisotropic Distributions. 
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Figure D. Idealized Plot of Frequency versus Time 
for o Type It Solar Radio Burst. 
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Ordered Field Lines 

rigure u. iaeaiuea SKeicn OT a boiiisioniess SWCK wave in 
the Solar Corona. 


